
Pergamon 
I. Appl. M&s Me&, Vol. 57, No. 6, pp. 1005-1014,1PP3 

Copyright Q 1994 Elsevier Science Ltd 
Printed ia Great Britain. AU rights reserved 

0021-8928/93 s24.00+ 0.00 
0021-8928(94)EOOO6-V 

CONTROL OF AN 
USING LOAD 

ELASTIC MANIPULATOR ARM 
POSITION AND VELOCITY 
FEEDBACK-f 

E. K. LAVROVSKII and A. M. FORMAL’SKII 

(Received 26 February 1993) 

The rotation of an elastic manipulator arm about one of its ends in the horizontal plane is investigated. 

A load is attached to the other end. The motion is effected by an electric motor. The control is 

constructed in the form of linear feedback on the position of the load, its velocity, and the angular 

velocity of the arm. The stability of the control process is investigated. It is shown that when there are no 

viscous damping forces proportional to the angular velocity of the arm, load position and velocity 

feedback leads to undamped oscillations of the system and the desired equilibrium position is not 

stabilized. Asymptotic stability domains in the feedback coefficient space when viscous damping is 

present are constructed. Comparison shows these domains to be smaller than corresponding domains 

for a completely rigid body. 

1. THE EQUATIONS OF MOTION 

CONSIDER an elastic homogeneous rod of length 1 and constant transverse cross-section. The rod 
can rotate in the horizontal plane (the plane of the diagram) about one of its ends: the fixed 
point 0 (Fig. 1). Attached to the other end of this arm is the object to be manipulated: a load, 
which we shall assume to be a point of mass M. Figure 1 shows the neutral line OM of the 
(bent) rod, which always lies in the horizontal plane. The moving coordinate axis OX touches 
the neutral line at the point 0. the angle between the OX axis and some fiied direction OP is 
denoted by a. We denote by u(x, t) the deviation at a time t of the point with coordinate x on the 
neutral line OM from the OX axis. The rotation of the arm is controlled by an electric motor 
(not shown in Fig. 1) through a reduction gear with reduction coefficient k. Let J be the moment 
of inertia of the motor armature and <p the angle of rotation of the armature, so that Q(r) = k&(t). 

In the linear theory of thin straight inextensible rods [l, 21 the equations of motion of this 
mechanical system can be written in the form [3-51 

EZlf’“(x,t)+ p(ii(x,t) + xii(t)> = 0 (1.1) 

J~(t)=Q+(Ellk)u”(O,t~ (l-2) 

u(O,t) = u’(O,t) = U”(l,t) = 0 

M( $1, t) + l&(t)) = Eh"'( I, t) (1.3) 

TPrikl. Mat. Mekh. Vol. 57, No. 6, pp. 51-60.1993. 
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FIG. 1. 

Here p is the density per unit length of the material, E is Young’s modulus, Z is the constant 
moment of inertia of a transverse section of the rod about the vertical axis, and Q is the 
electromagnetic torque about the axis of the armature. 

Relation (1.1) describes plane transverse oscillations of the rod [l, 2, 61 for a specified 
angular acceleration &. It ignores energy dissipation during oscillations. Relation (1.2) 
describes the variation of the angular momentum of the motor armature; the second term on its 
right-hand side describes the torque imposed on the armature by the elastic rod; the inertia of 
the reduction gears is ignored. Equations (l.l)-(1.3) omit terms containing ix* so that 
centrifugal forces applied to the rod are ignored. 

We describe the torque Q by the relations [7] 

Q = oc, L&t) + RC(t) + a+(f) = w (1.4) 

The second of these is the potential balance equation in the motor winding. Here C, L and R are 
the current, inductance, and ohmic resistance of the coil, respectively, @ is the magnetic flux, and 
w is the controlling voltage applied to the motor. 

We introduce the new variable 

u(x,t) = U(X,t)+xa(t) (1.5) 

which describes the total deviation of the rod from the OP axis, together with the dimensionless 
variables u * x* t* w * , , , 

(1.6) 

Substituting relations (1.4)-(1.6) into (l.l)-(1.3) and omitting the asterisks, we obtain 

u”“(x,t)+ ii(x,t) = 0 (1.7) 

jT,i’(O, t) + j;“(O,t) + Sli’(0, t) - T,li”(OJ) - u”(O,t) = w U-8) 

u(O,t) = U”(l,t) = 0, mii(l,t) = u”‘(l,t) (1.9) 

Here j, m, T, and 6 are dimensionless parameters (the moment of inertia of the motor 
armature, the mass of the load, the electromagnetic time constant and the back EMF coefficient) 

J 

‘=F’ 
Q2k2 

lR( Elp+ 
(1.10) 

Relation (1.8), obtained from Eqs (1.2), (1.4) using the equation 
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u’(0, t) = a (1.11) 

plays the role of a boundary condition for the new boundary-value problem. Equation (1.11) 
follows from the boundary condition (1.3) ~‘(0, t) = 0. 

If we put TL = 0 in Eqs (1.7)-(1.9), we obtain equations [3] in which the inductance L of the 
coil is ignored. 

2. STATEMENT OF THE PROBLEM. CONTROL 

When w = 0 the boundary-value problem (1.7)-(1.9) has the solution 

u(x,t) = Gx (u(x,~) = 0, cx= G) 

where G is an arbitrary constant corresponding to an undeformed rod rotated through an angle 
a = G from the OP axis. When G = 0 we have 

u(x,t) = 0 (u(x,t) = 0, a = 0) (2.1) 

We consider a control in the form of linear feedback which is intended to ensure the 
asymptotic stability of solution (2.1) 

n+(t)+ W(f) = -pli’(o,t)-BoU(l,t)-P,U(l,t) (2.2) 

Here T > 0 is a dimensionless time constant in the control circuit, and p, PO, l3, are constant 
feedback coefficients with respect to the angular velocity o, the position of the displaced load, 
and its velocity. To implement the feedback (2.2) it is of course necessary to have appropriate 
detectors. 

The purpose of controlling the manipulator is usually to bring the manipulated object into a 
required position and to keep it in that position. Hence it is natural to investigate control with 
position feedback. 

Control with feedback of the form (2.2) with T = 0 has been previously considered [S, 91, and also 
for feedback with respect to the angle a, its derivative and integral, and with respect to the bending 
deformation of the rod [3]. Control by sequential displacements of the elastic rod has alao been considered 

WI* 

Suppose that with condition (2.1) the manipulated object occupies the required position; we 
then say that the equilibrium (2.1) is desired. The equilibrium state (2.1) is a solution of the 
system of equations (1.7)-(1.9) with control (2.2). The linear boundary-value problem (1.7)- 
(1.9), (2.2) determines an infinite spectrum of eigenvalues h. Specifying the asymptotic stability 
problem for the solution of Eq. (2.1), we pose the following problem [3, lo]. In the coefficient 
space of the feedback (2.2) it is required to construct a region of values for which all the 
eigenvalues 5 satisfy Re h < 0. 

In addition to (1.7)-(1.9) we consider, for comparison, the equations of motion of a 
completely rigid arm with a load at its end, controlled by means of the feedback (2.2). In the 
dimensionless variables given by (1.6) they have the form 

TL(t+m+ j)ii+(~+m+ j)8+6&= w (2.3) 

T~+w=-~,a-(fl+~l)dr (2.4) 

The parameters in Eq. (2.3) are described by relations (1.10). 
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For a completely rigid arm, feedback with respect to the load position, its velocity, and the 
angular velocity & of the arm is equivalent to feedback with respect to the angle 01 and the 
angular velocity &. Hence in expression (2.4) the coefficient of the velocity ct is the sum I3 + pl. 

3. THE CHARACTERISTIC EQUATION 

We shall seek a solution of the boundary-value problem (1.7)-(1.9), (2.2) in the form 

u(x,t) = KPX(x) 

where K is a constant, h is an eigenvalue, and X(x) is the eigenfunction. 
We obtain for the function X(x) the boundary-value problem 

X”“(X) + PX(x) = 0 (3.1) 

[(jT$ +jh+6)hX’(0)-(T,h+1)X”(0)](TX+1)= (3.2) 

= -pxx’uN - (PO + P,~)XU) 

X(0) = X”(1) = 0, mPX(1) = X”‘(1) (3.3) 

We construct a solution to the boundary-value problem (3.1)-(3.3) in the form of the sum 

X(x) = C, sin vx + C2 cos vx + C, sh vx + C, ch vx (3.4) 

where C,,..., C, are unknown constants and 

A* = _v4 (3.5) 

Substituting expression (3.4) into the boundary conditions (3.2) and (3.3) we obtain a system 
of linear homogeneous equations for the constants C,, . . . , C,. Expanding the determinant of 
the system, we obtain the characteristic quasipolynomial. The non-zero eigenvalues h satisfy the 
following characteristic equation obtained with the help of this quasipolynomial 

A(h)= R(X)R,(v,m)+~(Th+l)(T,h+l)R~(v,m)+(~~ +&h)R3(v)Iv=0 (3.6) 

where 

R(h)=3L[(jTLh2+jh+6)(Th+1)+P], R,(v,m)=Q,(~)+mvQ~(v) 

R2(~,m)=Q3(v)+2m~Q2(v), R,(v)=sinv+shv 

Qi(v)=l+cosvchv, Q,(v)=-sinvshv, Qs(v)=shvcosv-chvsinv 

R(h) is the characteristic polynomial of the electric motor with feedback (2.2) for PO + p1 = 0; 
R,(h) is the characteristic quasipolynomial of the elastic rod with cantilever attachment, and 
R,(v, m) with hinged attachment. 

From Eq. (3.5) we obtain h = &iv*. Substituting each of these values into (3.6) we obtain two 
equations in v. However, the values of h obtained by solving these equations are the same, 
because if v is a root of one of the equations then iv is a root of the other. It is thus sufficient to 
analyse just one of the equations obtained by substituting into (3.6), for example, the expression 

h=iV* (3.7) 
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Together with v Eq. (3.6), (3.7) has the roots -v, ij, and -iV. The roots +v and -G corres- 
pond to the eigenvalues h and h. 

It follows from Eq. (3.6) that A(0) = PO. Suppose I is a real number and v = v(r)= 
rexp(+c/4). Then 1=iv2 = 1’. When t + +oo we find from expression (3.6) that A(h)= 
A(?) + +oo. Hence when p,, < 0 (positive feedback) IQ. (3.6) has a real root h > 0 and solution 
(2.1) is unstable for all /j, pl, T, TL, m, j, ii 

Suppose A,(h) = A(h)/ h. Then when fi,, < 0 we obtain Al(O) = 2@+ p+ 8). If v = V(T), then 
when r 3 +oo we have A,(h) = A,( r2 -+ ~00, From this it follows that when PO = 0, S + B + & c 0 ) 
(negative damping) the system is unstable. 

To study the asymptotic stability of solution (2.1) we shall use the D-decomposition method 
[ll]. It follows from relation (3.7) that if 3L takes imaginary values then v is imaginary or real. 
We substitute the value S = ie*, into Eq. (3.6), where E is a real number, and consider its real and 
imaginary parts 

Relations (3.8) determine in the system parameter space the image of the real axis v= E, 
--mc E c +oo. They do not change when E is replaced by -E. Hence the boundary of the 
asymptotic stability domain in the parameter space can be found by constructing the surface 
(3.8) for 0 G E < 9 

4. SYSTEM INSTABILITY WHEN THERE IS NO VISCOSITY 

Consider the case 

s=p=o (4-l) 

i.e. when there is no back EMF in the motor and there is no feedback with respect to the angular 
velocity &. 

For the case (4.1) with 

T=TL=m=j=O 
(4.2) 

Equation (3.6) takes the form 

A(h)=v(shvcosv-chvsinv)+(J$,+&~)(sinv+shv)Iv=O, h=iV2 (4.3) 

Let h,=ivf (s=1,2,.. .) be the roots of Eq. (4.3) with PO = g, = 0. These are purely imaginary 
roots. The values of v, are given by the asymptotic formula 

v, nxf4+m (s=1,2,...) (4.4) 

We put h = %, Pi = AIL v + v, -I- Av,, h+ h, + AL,, where A& = 2iv,Av, and we approximate 
Eq. (4.3) in a neighbourhood of the point g, + & = 0, h = 1L,(v = v,) by the linear equation 

-2~: sin v, shv,Av, + (A&, + A&iv:)(sin v, + sh v,) = 0 (4.5) 

From Eq. (4.5) we obtain 

Re h = Re Ah, = - ” znn:s 
5’ 

zit ‘,) .4& 
S 

(4.6) 



It follows from (4.4) that the quantities (4.6) are positive for “large” odd values of s if A& > 0, 
and fur “large‘ even values trf s if A& <Q. Hence if @, f O and the values of t& t, t& i are srmdl, 
&en Eq, (4.3) has ro&s h such that Reh> 0. From rela~~ns (3.8) with ~~~i~~ns (4.Q (4.2) i-t 
fultows that if && it 0, then all roots h of Eq. (4.3) are such that Re h f: 0. ff & = Q then for any 
& it 0 Eq, (4.3) has the single root h = 0, and other roots such that Re h + 0. Equation (4.3) only 
has purely imaginary roots when p, = 0, It follows from Rouche’s theorem [12] that each root of 
(3.6) depends continuously on the parameters @, &, a+ T, T’, m, JP 6. Hence, when the 
c~ffi~i~~~ & and & are varied, the real part of any root k of (4.3) can change its sign only 
when the point &, &) intersects the 8, =0 axis. Because for Eq. (4.3) in a small neigh- 
baurbood of the point p,, =& =0 with b1 f0 there are roots h such that Reh>D, then from 
what has been said it follows that there are such roots at any p&nt of the @,, &) plane when 
pi ;cO, Thus, if @, *O, Eq. (4.3) has roots h such that Reh> 0. Thus in the case (4.1), (4.2) with 
any coefficients & and 8, f 0, the solution (2.1) is unstable. 

‘Instead of (4-2) we consider the weaker resection 

Under the c~ndi~~~~ (4.1), (4.7), as under the c~uditi~~ (4.1), f4,Qi Eq. (3.6) has purely 
imagi~a~ roosts only when Br = 0. From this, using the c~ntin~ty af the dependence of each 
roOt of Eq. (3.6) on the parameters PO* &, m, j? we can ccxxlude that the sulutiun (2.1) is alsa 
unstably when fr, # 0 in the more general case (4.1), (4.7). 

From Eqs (3.8) we have 

In the case (4.1) when 

T&=0 (4.10) 

PI = T&i (4.11) 

If @, = 0, then for all values & f 0 Eq. (3.6) has the singIe root h = 0 and other roots & such 
that Reh, ;t 0. Equation (3.6) has purely vaginas roots only under condition (4.11). 

Consider the t~ee~~ensi~nal Farameter space &, & T when 0 c T-C =* We recall that if 
T=O, then there is i~stabi~ty when & +T&, (p, +a), From this, using the continuity of the 
dependence of each root of (3.6) on the parameters &, &, T, we can conclude that the 
equi~b~i~ (2.1) is unstable when & ;c T&, in the case (4J), (4.10). Because with c#nditi~~ (4.1) 
the time constants T and TL occur symmetrically in relations (4.8) and (4,9), the derived 
a~erti~~s on the instabi~ty ctf the eq~~~brium (2-l) with load ~~sitiun and velucity feedback 
remain true if T = 0 and TL f 0. 

Thus load velocity feedback does not compensate for the lack af viscosity and does not 
stabilize the system. 

If for some coefficients PO and p1 the system is unstable in the case (4J), then it remains 
unstable fox suf~cien~y small values of the damping coefficients 8 and feedback 6. 

The assertion d the i~stabi~ty of a system with fee~ack of the form (2-2) fur small viscuus 
damping forces ~r~~rti~~al to the angular velocity dt IS, 91 was based on e~~erim~~tal and 
numerical i~vestigati~~s~ The n~erical investigations in f9] were performed without taking 
into account the dynamics of the drive (j = 6 = TL = 0) and delay in the control circuitry (T = 0). 
Here this assertion is proved analytically bath when the drive dynamics and delay are taken into 
account and when they are not, 
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5. STABILITY DOMAINS WHEN THERE IS VISCOSITY 

We will denote by Sz the smallest local maximum of the function PO = B,,(E) (4.8) when 
O<E c=. Under the conditions (4.1), (4.2) pz ~10.17. It can be shown that in the case (4.1), 
(4.10) when PO > Sz, b, = TpO, Eq. (3.8) has roots h such that Reh > 0, and the system is 
therefore unstable. For 0 < PO c PO*, & = n, the system is stable, but not asymptotically so. The 
same is also true if 6 = b = T = 0, TL f 0. When TL = 0, 6 > 0, b > 0 there exists in the PO, p1 plane 
a domain of asymptotic stability (DAS). If 6 + 0, l3 + 0 this domain contracts to the interval 
0 < &, < pz, B1 = Q,,. When T = 0, 6 > 0, p > 0 a DAS exists “around” the interval 0 c p,, c pr, 
kt;2a+, only when j= 0. If however j # 0, then there is no asymptotic stability outside this 

Under conditions (4.7) one can introduce the variable p1 /(6 + p) instead of p1 in relation (4.9). 
Figure 2 shows the domains of asymptotic stability for the variables PO, p1 /(6 + p) according to 
formula (4.8), (4.9) when T = TL = j = 0 and m = 0, 1,2. (These domains lie inside the loops and 
are bounded on the left by the p,, = 0 axis). The DAS for a completely rigid body (2.3) with 
control (2.4) under conditions (4.7) is unbounded and is described by the inequalities 

Po>O. Pl >-s-P (5.1) 

It follows from known results [3] that the domains of asymptotic stability for a pliable arm 
with feedback with respect to the angle ct (with coefficient PO) and angular velocity & (with 
coefficient p+pl) in the case (4.7) are also described by inequalities (5.1). The domains of 
asymptotic stability shown in Fig. 2 are bounded and are completely contained in domain (5.1). 

When there are no viscous forces proportional to the angular velocity ir, load velocity 
feedback has no stabilizing effect on the system (see Section 4). Consideration of Fig. 2 shows, 
however, that when 6 + p f 0, as p1 increases up to a certain value the range of stable values of 
PO increases. For example, if m=l, then when pi = 0 only the interval 0~ p,, ~3.2 is 
asymptotically stable, while when p1 = 10 the interval 0 c PO < 25 is asymptotically stable. The 
bigger the mass m, the larger the range of stability for PO when b, z 0. If m -_j 00, then, as can be 
shown using relations (4.8) and (4.9), the stability domain “fills” the entire corner PO > 0, 
fil > (p,, 13 - 1)(6 + p). Thus, for sufficiently large values of m all the points within this corner lie 
in the stability domain, and all the points outside this corner are outside the stability domain. 
Hence load velocity feedback can stabilize the system when there is no viscosity. 

FIG.~ 
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In Fig. 3 formulae (4.8) and (4.9) are used to construct the DAS when TL = j= 6 = 0, i.e. 
without taking into account the motor dynamics, for T =O, 1, m= 2, j3= 1, 2, 3. When p 
decreases the DAS decreases in size, and when p + 0 it contracts to an interval on the straight 
line (4.11) and vanishes, as stated above. The DAS of an absolutely rigid body (2.3) with control 
(2.4) when TL = 0 is unbounded and is given by the inequalities 

(5.2) 

It follows from known results [3] that the DAS for a pliable arm with feedback with respect to 
the angle Q and angular velocity dc with TL = 0 is also unbounded. The domains shown in Fig. 3 
(situated inside the loops to the right of the p,, = 0 axis) are bounded. Each of them is entirely 
contained in the corresponding domain (5.2), and this can be shown analytically using (4.8) and 
(4.9). 

The reduction of the DAS when the rod pliability is considered emphasizes the importance of 
this consideration when investigating control processes. 

Comparison with results obtained previously [3] shows that in the cases considered with 
feedback with respect to the angle c1 and angular velocity & the DAS in the feedback coefficient 
space is larger than for load position and velocity feedback. 

6. STABILITY DOMAINS WHEN &=O 

If pi = 0, then from Eqs (3.8) we have an expression for b,, in accordance with (4.8), and, 
moreover 

p=-6+j(T+TL)E4-&(T+TL)R2(~,m)lRl(s,m) (6-l) 

We denote by E, = am (i = 1, 2, . . . ) the zeros of the quasipolynomial R,(E, m). 

Pf 

627 

W 

20 

u 
V 20 

FIG. 3. 
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By considering relations (3.6), (3.8), (4.8) and (6.1) it can be shown that with condition (4.7) 
the DAS occupies the “half-strip” 

&)(E,)>PO >Q P>-s (6.2) 

where the function B&E) is defined by (4.8). 
If T + 0 or (and) TL + 0, then the parametric equations (4.8) and (6.1) describe an infinite 

number of branches. The first branch VI is obtained for 0 <E c E,. It begins when E = 0 at the 
point 

p()=o, p=-s (6.3) 

When E + E, -0 we have P,,(E) + P,,(EJ, p( E + +oo and the branch VI tends to the asymptote ) 
A,. Each of the subsequent branches y (i = 2, 3,. . .) is obtained when E,, c E < Ed. On each of 
them the quantity p increases strictly monotonically from - to += as E increases. Hence none of 
the branches intersects itself and each of them divides the PO, p1 plane into two parts. The 
branch v (i a 2) has two asymptotes Ai, and 4. : it approaches the first when E + Ed, +0 and 
the second when E + ei - 0. The asymptotes are parallel to the j3 axis and are described by the 
equations PO = ~JE~). All branches v (i = 1, 2, . . .) intersect the p axis. If T = 0 and TL z 0, the 
intersections occur at the point (6.3). If T #O and TL = 0, all intersections except the first lie 
below the point (6.3) and as i + 00 they move away from it strictly monotonically and tend to 
--oo. If however T + 0 and TL # 0, the points of intersection of the branches v for 2 < i 6 p lie 
below the point (6.3), and for p + 2 c i they lie above the point 

po=o, 0=6TlT, (6.4) 

The number p is equal to the maximum value of i for which 1 - TT,ef > 0. The branch Vpcl, 
and only that branch, intersects the p axis twice: the first time below the point (6.3), and the 
second time above the point (6.4). As i increases those points of intersection which lie below the 
point (6.3) move away from it strictly monotonically, while those above the point (6.4) approach 
the latter strictly monotonically and tend to it as i + 00. 

We will take the positive direction of motion along each branch to be the direction for which 
the parameter E, and hence p, increases. Here each of the branches divides the PO, p, plane into 
a left part and a right part. To construct the stability and instability domains it is important to 
establish whether the number of eigenvalues h for which Re h > 0 increases or decreases as the 
point PO, p crosses each branch from left to right [ll]. Analysis of Eqs (3.6), (4.8), (6.1) shows 
that the number of eigenvalues h for which Reh z= 0 increases on crossing from left to right the 
branch on which &(E, m) > 0, and decreases on crossing the branch on which R1(&, m) c 0. 

Bearing in mind the properties of the branches y (i = 1, 2, . . .) described above, we can show 
the following. Let T = 0 and TL f 0. If we also have j # 0, then there are no values of p, and p1 
for which the system is asymptotically stable. If however j=O, then a DAS exists, bounded on 
the left by the p axis and on the right by the curve formed by the y branches. The DAS for 
T = j = m = 0, TL = 0.02, 6 = 2 is constructed in Fig. 4. Its right-hand boundary is the branch V,, 
tending to the asymptote 4. This domain lies in the half-strip (6.2). Let TL = 0 and T # 0. If we 
also have 6 # 0 or 6 = j = 0, then a DAS exists and is similar to the domain shown in Fig. 4. It 
too is an unbounded set. If however 6 = 0 but j f 0, the system is not asymptotically stable for 
any values of PO and p,. 

It can be shown that if T # 0 but TL # 0, then the DAS is bounded, and its left boundary is a 
section of the p axis satisfying the conditions 

The right boundary is constructed using the branches y. Its ends are the points (6.3), (6.4) 



1014 E. K. LAVROVSKII and A. M. FORMAL’SKII 

FIG. 4. FIG.5 

(Fig. 5). In the PO, p plane this domain lies in the strip (6.5). 
We note the following fact which can be strictly proved by analysing relations (3.8) in the 

complete parameter space b, PO, l$. If 78 - TJ! > 0 and TL > 0, j > 0, then when p1 # 0 there is 
no asymptotic stability. This in the certain sense supplements the stability picture. 

In the above, in a number of cases where one or another parameter tends to zero, the DAS 
does not shrink to zero continuously, but disappears “instantly” (“in a jump”), or “instantly” 
appears. This apparently paradoxical loss of continuity can occur in systems with infinite 
spectra and does not occur in systems with a finite number of degrees of freedom. 
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